AIAA JOURNAL
Vol. 48, No. 11, November 2010

Error Estimation and Error Reduction in Separable

Monte-Carlo Method

Bharani Ravishankar,* Benjamin P. Smarslok,! Raphael T. Haftka,# and Bhavani V. Sankar?

University of Florida, Gainesville, Florida 32611

DOI: 10.2514/1.J050439

Reliability-based design often uses the Monte—Carlo method as a sampling procedure for predicting failure. The
combination of designing for very small failure probabilities (~10~% — 10~%) and using computationally expensive
finite element models, makes Monte—Carlo simulations very expensive. This paper uses an improved sampling
procedure for calculating the probability of failure, called separable Monte—Carlo method. The separable Monte—
Carlo method can improve the accuracy of the traditional crude Monte—Carlo when response and capacity are
independent. In previous research, accuracy of separable Monte—Carlo for a simple limit state was estimated via
expectation calculus for a simple form of the limit state. In this paper, error estimates for a general limit state are
developed through bootstrapping, and it is demonstrated that the estimates are reasonably accurate. Separable
Monte—-Carlo allows us to choose different sample sizes of the response and capacity in the limit state, and the paper
demonstrates that bootstrapping may be used to estimate the contribution of the response and capacity to the total
error. When the accuracy of the probability of failure is not good enough, the paper proposes reformulation of the
limit state as another way to reduce uncertainty associated with the expensive random variable (usually the
response). The accuracy of the bootstrapping estimates and the effectiveness of regrouping is demonstrated with an

example of prediction of failure in a composite laminate with the Tsai—Wu failure criterion.
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mean probability of failure estimate
obtained empirically from crude
Monte—Carlo technique
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obtained empirically from separable
Monte—Carlo method original limit
state

mean probability of failure estimate
obtained by bootstrapping from
separable Monte—Carlo method
original limit state

mean probability of failure estimate
obtained empirically from separable
Monte—Carlo method regrouped
limit state
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average uncertainty (standard
deviation estimate) in the mean
probability of failure estimate due to
the capacity obtained by
bootstrapping from separable
Monte—Carlo method

average of the standard deviation of
the mean probability of failure
estimate obtained by bootstrapping
from separable Monte—Carlo method
regrouped

number of repetitions for estimating
accuracy

number of response random samples
random variable for internal pressure
load

mean value of pressure load

actual probability of failure
probability of failure estimate
obtained from bootstrapping
estimate of probability of failure
using crude Monte—Carlo

estimate of probability of failure
using separable Monte—Carlo
estimate of probability of failure
using separable Monte—Carlo with
regrouped limit state

transformed reduced stiffness matrix
of each ply of the laminate

random variable for response of a
system

vector of random variables of
strength of the composite

vector of mean values of strength of
the composite

standard deviation obtained through
bootstrapping

standard deviation of the mean
probability of failure estimate
obtained empirically from crude
Monte—Carlo technique

standard deviation of the mean
probability of failure estimate
obtained empirically from separable
Monte—Carlo method original limit
state

standard deviation of the mean
probability of failure estimate
obtained empirically from separable
Monte—Carlo method regrouped
uncertainty in the probability of
failure estimate due to the response
obtained empirically from separable
Monte—Carlo method original limit
state

uncertainty in the probability of failure
estimate due to the capacity obtained
empirically from separable Monte—
Carlo method original limit state
uncertainty in the standard deviation
of the probability of failure estimate
due to the response obtained by
bootstrapping from separable
Monte—Carlo method original limit
state

uncertainty in the standard deviation
of the probability of failure estimate
due to the capacity obtained by
bootstrapping from separable
Monte—Carlo method original

limit state
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uncertainty in the standard deviation
estimate of the mean probability of
failure obtained by bootstrapping
from separable Monte—Carlo method
original limit state

uncertainty in the standard deviation
estimate of the mean probability of
failure obtained by bootstrapping
from separable Monte—Carlo method
regrouped

StdeV(StdeV (ﬁsmc,bool))

stdev(stdev(pX . voor))

Sir = tensile strength of the composite in
one-direction

Sic = compressive strength of the
composite in one-direction

Sor = tensile strength of the composite in
two-direction

SHe = compressive strength of the
composite in one-direction

S = shear strength of the composite

(7] = transformation matrix for each ply
of the laminate

X, X, = mutually independent random
variable vectors

{01,050, 115} = normal and shear stress

o = vector of stresses in the laminate

o = vector of stresses per unit load

o = vector of mean values of
stresses

1. Introduction

COMMON way to estimate the structural probability of failure

of a system is with Monte—Carlo simulation of the capacity and
response in the limit state function [1-6]. There are other more
efficient methods, such as the first-order reliability method (FORM),
second-order reliability method (SORM), but they do not work well
for problems with multiple correlated failure modes [7,8]. The
traditional, crude Monte—Carlo technique (CMC) is simple, but it
lacks accuracy when sampling is limited due to computationally
expensive structural analysis, such as from finite element analysis
(FEA) [9]. When the response and capacity random variables are
statistically independent, accuracy can be improved by the separable
Monte—Carlo method (SMC) [10,11]. SMC samples response and
capacity separately and compares all random samples of the response
against all random samples of the capacity. This allows for improved
accuracy of the calculation of the probability of failure for the same
computational budget.

Previous work with separable Monte—Carlo only explored simple
limit states, expressed as a difference between arandom response and
a random capacity [10]. For this simple limit state, error estimates
were derived in terms of the number of samples of the response and
capacity. This paper looks at a more general limit state function that
combines sets of random response and capacity components. The
first objective of the paper is to demonstrate that for the more general
case, error estimates may be obtained by bootstrap techniques. A
second objective is to demonstrate that these estimates may be used
to guide uncertainty reallocation from expensive response to capacity
for improved accuracy for a given computational budget.

Note that there are other techniques to improve the accuracy or
efficiency of CMC, including importance sampling and the use of
surrogates [12]. These complement SMC, in that they can be used
together with SMC to further improve accuracy or efficiency.

The following section reviews the crude and separable Monte—
Carlo methods and illustrates the possible reallocation of uncertainty
by calculating response per unit load. This section also describes the
bootstrapping method, which is to be used for estimating the error in
the SMC calculations. The crude and separable Monte—Carlo meth-
ods are then applied to the nonseparable limit state (the response and
capacity components are integrated in the limit state) of the Tsai—Wu
failure criterion for a composite pressure vessel in Sec. III. In Sec. IV,
the accuracy of the methods is compared for different groupings of



2626 RAVISHANKAR ET AL.

the random variables for the separable Monte—Carlo method from the
estimate of coefficient of variation/standard deviation. The coeffi-
cient of variation of the probability of failure estimate for crude
Monte—Carlo can be obtained from binomial law, whereas for
separable Monte—Carlo, it is obtained from bootstrapping the limit
state variables. The error in the standard deviation estimate of the
bootstrapped probability of failure provides a measure of the accu-
racy of bootstrapping. Using SMC with the regrouped limit state
reduces the error associated with the probability of failure estimate,
since large samples of the inexpensive variables are available though
the samples of expensive variables are limited. Further the expensive
variables are bootstrapped and the accuracy of the bootstrapped
probability of failure estimate is compared with that of the empirical
estimate.

Since the example used in this paper involves simple calculations,
the coefficient of variation estimate was also obtained empirically
using different sample size of response and capacity. Comparing the
bootstrapped estimate to the empirical estimate, would provide the
magnitude of error associated with the bootstrapping technique.

II. Probability of Failure Estimates

Probability of failure is generally estimated using a limit state
function G, which defines the failure condition. The limit state is a
function of capacity C, and response R, which are assumed to be
functions of statistically independent random variables X; and X,,
respectively. Equation (1) shows the separable case where failure
occurs when a single component of response exceeds a single
component of capacity

G(X, X5) = R(X;) — C(X,) (1)

Failure occurs when G > 0 and the system is safe when G < 0. In the
more general case, the capacity and the response in the limit state
cannot be explicitly separated, and the limit state function may be
represented as

G(X;, X,) = G(R(X,). C(X5)) 2

where R and C may be scalar or vector quantities.

A. Crude Monte-Carlo Method

A common simulation-based method for calculating the proba-
bility of failure py, is traditional, crude Monte-Carlo [1-3]. The
probability of failure is estimated by comparing pairs of randomly
generated response and capacity samples, as shown in Eq. (3)

X RS
Pene =y L MG(C, R) 2 0) 3)

where [ is the indicator function, which equals one if the condition is
true and zero if the condition is false. Thus, this essentially sums the
number of failures for N comparisons. The root mean square (rms)
error in the estimate may be measured by the standard deviation for
crude Monte—Carlo given as

1 —
stdev (o) = 2L 20 @)
N
R stdev(Peme 1—=ps) 1
CV(pp) = 28 P . JUZPD L )
by Py Py

For example, for a probability of failure of 1 in.a million,
100 million simulations are needed for 10% error. The coefficient of
variation calculated from standard deviation and mean provides a
measure of the relative rms error in the probability of failure estimate
about its mean value Eq. (5). Note that because we have only an
estimate of the probability of failure, from Eq. (3) we get only an
estimate of the error. The cost of response calculation is often the

limiting factor in the number of samples N, because response
calculations often require expensive finite element simulations.

B. Separable Monte-Carlo Method

When the capacity and response are statistically independent in the
limit state, then they can be sampled separately using a method called
separable Monte—Carlo. SMC has already been investigated for the
simple limit state as shown in Eq. (1) [10]. This study looks at SMC
for the general limit state in Eq. (2), the SMC method is shown in
Eq. (6)
. 1M
Pane =777 2 2 NG(C;.R) = 0] ©)

j=1 i=1

where N is the number of response samples and M is the number of
capacity samples. Because the response and capacity are sampled
separately, all of the possible combinations can be considered to
estimate p,. Figure 1 illustrates the resulting difference between
CMC and SMC.

In Fig. la, the direct one-to-one comparisons of CMC are shown
for N samples, whereas Fig. 1b shows that SMC looks at all of the
possible combinations of random samples, which makes it inherently
more accurate than CMC. In addition, different sample sizes can be
used to enhance the accuracy, depending on the relative compu-
tational expense of the response and capacity.

C. Error in the Probability of Failure Estimate

For CMC, the rms error in the probability estimate is provided by
Eq. (4). For SMC with the simple limit state as in Eq. (1), [10] derived
analytical estimates of the standard deviation via expectation
calculus. For the more general case of Eq. (2), we propose boot-
strapping the components of the limit state [13]. For estimating the
error in the probability of failure estimate, we use bootstrapping, a
resampling technique, which involves taking the samples of response
(expensive) and resampling them with replacement (so that the
samples may contain duplicates). When we perform the resampling b
times, we obtain b probability of failure estimates py.... With b
estimates of Py, We can obtain the standard deviation stdev(pyoo)
(see Fig. 2). As will be shown in the Sec. IV, the bootstrapping error
estimates appears to be comparable to the CMC estimate of Eq. (4).

Furthermore, we can obtain py,, estimates by bootstrapping
capacity at mean values of response and vice versa. The knowledge of
the individual contributions of the response and capacity towards the
uncertainty aids in choosing the appropriate sample size for response
N and capacity M, which would provide an accurate estimate of the
variation in the p, estimate. When we resample both the response
and capacity, we obtain the total uncertaintystdev(Pmc poor)- But for
the individual contributions of the response and capacity, the
response has to bootstrapped at mean capacity and vice versa to
obtain StdeVR (ﬁsmc.boot) and Stdevc(ﬁsmc.boot)'

In the numerical results in the next section, the bootstrapping
values are compared with the empirical values, stdev?(pg,.) and
stdevC(Pgme) to demonstrate the accuracy of the bootstrapping
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Fig. 1 Illustration of crude and separable Monte-Carlo Method
comparisons: a) CMC method, and b) SMC method where every
sampled response is compared with every sampled capacity.
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Fig. 2 Schematic representation of bootstrapping when only response is sampled.
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Fig. 3 Illustration of separable sampling with unit loads: a) with
stresses, and b) with unit load stresses.

method. To measure the error in the bootstrapped estimate, the
uncertainty in the standard deviation (stdev(stdev(Pgnepoot))) Of the
bootstrapped probability of failure estimate is also calculated. The
bootstrapping estimates would allow us to judge whether the number
of expensive simulations is sufficient for a desired level of accuracy.

D. Separable Monte—Carlo with Regrouping and Separable
Sampling of the Limit State Random Variables

When the bootstrapping estimates show that the accuracy of the
probability of failure is not good enough, and that the culprit is too
few samples of the expensive simulation, we may have a painful
choice between very high computational cost and accuracy. Often
there is an alternative to increasing the number of expensive samples
by reformulating the limit state, which is described in this section.
The number of samples required for accurate modeling of the
response and capacity depends on the relative contributions of the
random components in the limit state function. Where the larger
the uncertainty contribution, more samples are required for accurate

a) b)
Fig. 4 Diagrams of: a) composite pressure vessel of 1 m diameter with
an internal pressure of 100 kPa, and b) stresses acting in the laminate.

representation of the distribution. Assuming a computational limit on
the number of samples of the expensive response N, it is desirable to
reduce the uncertainty in the response (i.e., obtain narrower distri-
bution of the response) to achieve improved accuracy.

In most structural problems, failure of the system depends on the
strength of the material S (e.g., capacity), and stresses o the structure
sustains (e.g., response). So the limit state in Eq. (2) may become
G(0,S). In linear problems, stresseso, are a linear function of the
load P, as in Eq. (7)

o =0"P ()

where ¢ are stresses per unit load. The randomness in the load P is
often independent of the random variables that affect ¢ (geometry
and material properties), but P adds uncertainty to the computa-
tionally expensive stress calculation. Therefore, it would be advan-
tageous to separate the loads from the stresses and determine stresses
per unit load o*. This also enables a larger sample size of the load.
Even with a limited number of samples of stresses per unit load, the
probability of failure can be more accurately estimated as both the
strength and the load can be cheaply sampled. Then the expensive
unit load response ¢* is sampled and combined with the load in
Eq. (7). Finally, the limit state is reformulated as

G(o,S) = G"(o", P,S) ®)

The probability of failure can be determined from a large sample of
loads and strengths compared with a limited sample of stresses,
which is illustrated in Fig. 3.

The SMC formula that corresponds to Fig. 3b is shown in Eq. (9).

. 11 M N
Plne =170 > 11G" (!, P;.S)) = 0] ©

j=1 i=1

A similar form of Eq. (9) could be written for Fig. 3a, but with
different indices.

III. Application to Failure Analysis
of Composite Laminate

The CMC and separable sampling simulation methods and their
error estimates are compared and illustrated by applying them to a
nonseparable limit state problem [Eq. (2)]. References [14-16]
discuss reliability-based optimization of composite laminates in
detail. For complex structures, the stress is calculated through finite
element analysis and it may be computationally expensive. To allow

9t is possible to sample loads separately and with a different sample size
than M. This would be an easy extension of SMC but for simplicity we do not
consider it in this paper.
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Table 1 Material properties and uncertainty of the
normally distributed random variables

Properties Mean CV% Strength Mean CV%

E,,GPa 1591 5% S,;,MPa 2312 10%
E,,GPa 83 5% S,o,MPa 1809 10%
Gp.GPa 33 5% S,;,MPa 392 10%
Vi 0253 5% S,r,MPa 972 10%
P, kPa 100 15% S MPa 332  10%

us to perform thousands of Monte—Carlo simulations needed to
validate the method, we selected an example that requires the
calculation of stresses at a single point using Classical Lamination
Theory (CLT).The problem involves prediction of failure of
composite pressure vessel according to the Tsai—Wu failure criterion.

A composite laminate pressure vessel (Fig. 4) is made of a
graphite/epoxy [+25/ — 25], symmetric laminate with each layer
being 125 um thick and is subjected to an internal pressure of
100 kPa. The material properties of the composite are shown in
Table 1. In this paper, all of the input random variables are assumed to
be normally distributed. However, the performance of SMC depends
on the distribution of the response and capacity, which is not
necessarily normal. Previous research has used other distributions,
such as lognormal and uniform, with SMC method [17,18].

The stresses generated are a function of the internal pressure P and
material properties of the laminate which are independent of each
other.

o, Pd/2 1/2

oy ¢ =I[TIIQNAI' Pd/4 ¢ =[TIQNIAI™'] 1/4 P

T12 0 0
of

=405 (P (10)
173

The stresses 0, 0, (normal) and 1, (shear) acting in each ply of the
laminate are function of in-plane stiffness matrix of the laminate [A],
reduced stiffness matrix of each lamina [Q], transformation matrix of
each lamina [T7], the pressure load P and the diameter d (1 m) of the
vessel as in Eq. (10). References [19-21] provide detailed
explanation of Classical Laminate Theory (CLT) and determination
of stresses by CLT.

Failure of composite laminate is predicted from the strength of the
composite and stresses generated using a suitable failure criterion.
The most widely used criterion for composites is the Tsai—Wu
criterion [19]. The criterion is a function of the strengths S (as shown

x108

.2

0.8

0.6}

0.4

0.2}

T5 2 25 3 35 4 45 5 55

x108
Fig. 5 Distribution of stress and strength in the two-direction o,
showing the probable failure region.

in Table 1, [22] along with their uncertainties), and the stresses o, in
the fiber and transverse direction (e.g., one- and two-direction,
respectively).

According to the criterion, a layer of the laminate is assumed to
have failed when the limit state in Eq. (11) is greater than or equal to
Zero

G(S,0) = F,,0% + Fy,03 + Feg13, + Fi0, + F,0,

+ Fpojo; — 1 (11)
where
1 1 1 1
TS S Sir Sic SarSsc
1 1 1 VF Fy
Fr=—— Foo=— F,="1"22 12
2T Sy Sic s, ? 2 12

Uncertainties in the Tsai-Wu coefficients (F;, Fa, Fgg,
F,, F,, F,) are due to randomness in the unidirectional tensile, com-
pressive, and shear strengths S of the composite. Uncertainty in the
stresses is due to randomness in material properties (or o*) and
pressure load P.

The in-plane normal and shear stresses {0, 0,, T),}", are unique in
each layer of the laminate. As previously mentioned, the laminate is
made of [+25/ — 25]; plies and the analysis shows that the inner
(—25°) plies fail and then outer plies fail. Among the normal and
shear stresses acting on the ply, the stress in the transverse direction
0, causes the failure of the laminate (the overlap of the stresses and
strengths) which can be seen in Fig. 5.

The stresses are a function of material properties and internal
pressure P as in Eq. (10). For unit pressure load (p = 1), stresses are
equal to . Therefore, the original limit state function (G (o, S)) can
be reorganized as indicated by Eqgs. (6-8).

IV. Results and Discussion
A. CMC and SMC Methods

The probability of failure of a composite pressure vessel was
calculated using CMC and SMC methods. It was assumed that our
computational budget only permitted 500 stress calculations (o).
Therefore, for CMC, an equal number of random response ¢ and
capacity S variables (N = 500) were sampled for comparison. In the
case of SMC, the response samples (V) were compared against all the
capacity samples (M = 500) resulting in 250,000 evaluations of the
limit state. The actual probability of failure is p, = 0.0121 (As this is
a simple problem, the actual probability of failure was estimated by
CMC method by generating 5 million samples of stress and strength
values). The relative error in crude Monte—Carlo was measured by
calculating the standard deviation from Eq. (4) and hence the
coefficient of variation. This value provides a measure of how
accurate is the probability of failure estimate. For a simple limit state
[as in Eq. (1)], the accuracy of separable Monte—Carlo can be
estimated as derived by Smarslok et al. [10]. Because this problem is
defined by a general limit state (e.g., Tsai—-Wu), bootstrapping was
performed to assess the accuracy of the probability of failure estimate
of SMC with a b = 1, 000 bootstrap repetitions. Because the stresses
are computationally expensive and it is cheaper to sample the
strengths, random samples of stresses were bootstrapped, but the
strengths were sampled anew rather than bootstrapped. That is, in
each of the 1000 bootstrap repetitions, the stresses were resampled

Table 2 Empirical and bootstrapping estimates of probability of failure
using SMC and CMC with N = M = 500 and r = 10, 000 repetitions

CMC SMC, original limit state SMC, regrouped

Empirical ~ Bootstrapping ~ Empirical ~ Bootstrapping

mean(ﬁcmc) mean(ﬁsmc) mean(ﬁsmc.boot) mean(ﬁZmC) mean(ﬁgmc{hn(n)
0.0121 0.0121 0.0121 0.0120 0.0122
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Table 3 Standard deviation and coefficient of variation of empirical and bootstrapping p, estimates
using SMC and CMC with N = M = 500 and n = 10, 000 repetitions for original limit state.
Standard deviation of the bootstrapping error is also shown

CMC SMC, original limit state SMC, regrouped
Empirical Bootstrapping
stdeV(Peme)  CV(Peme)  SteV(Pame)  CV(Pame)  mean(stdev(piicpoo))  Stdev(stdev(pi,: o))
0.0048 40.0% 0.0025 21.0% 0.0020 0.0004

Table 4 Relative contributions of response (stresses) and
capacity (strengths) toward the uncertainty in p, through
bootstrapping and also compared with empirical results

Empirical Bootstrapping
stdevR (Pgne)  0.0017  mean(stdev® (Pgnepoo))  0.0019
CVR(Pgne) 154%  stdev(stdev® (Pgmepoor))  0.0004
stdeve(Pgme)  0.0012  mean(stdevC (Pgmeboo))  0.0014
CVE(Pme) 9.8% stdev(stdevE (Pemepoot))  0.0002

from the same 500 sample, while the strengths had a fresh sample
every time.

In this study (where simple CLT calculations were used) the
accuracy of the separable Monte—Carlo method was also assessed by
an empirical coefficient of variation obtained by performing n =
10, 000 repetitions. The probability of failure estimates are listed in
Table 2 and the estimates of the error in the probability of failure are
tabulated in Table 3. It shows that the coefficient of variation is
reduced from 40 to 21.0% by SMC. On average the bootstrapping
error estimate of the SMC probability (as measured by the standard
deviation) is about 20% low (0.002 compared with 0.0025), with a
standard deviation which is 5 times lower than that average. Thus in
the large majority of cases the error estimate is within 50% of the
empirical error.

Next we demonstrate obtaining the individual contribution of the
response and capacity to the uncertainty in the probability of failure
estimate obtained by bootstrapping the response at mean values of
the capacity, and vice versa. The individual contributions would help
when the overall error estimate is large and needs to be reduced by
increased sample size. The values of mean(stdev® (Pge poor)) and
mean(stdev’ (Pymepoor)) in Table 4 provide the uncertainty in p,
estimate due to the stress and strength, respectively. These values are
also compared with relative contributions of the stress and strength
obtained empirically to illustrate the accuracy of the bootstrapping
method.

From Table 4 we can see that the contribution of the response to the
uncertainty in the p, estimate is higher than the contribution of the
capacity. It is possible to reduce the response uncertainty by using a
larger sample. However, since response calculation is usually
expensive, we look instead to reduce the uncertainty in the response
contribution by other means. The response contains the load with its
large uncertainty (CV(P) = 15%). Calculating stress per unit load

0", isolates the expensive CLT calculation (or FEA) from the large
uncertainty in the load. The next section explores how the random
components in the limit state can be reformulated by using unit
stresses to reduce the error in the p, estimate.

B. Regrouping and Separable Sampling of the Limit State Variables
for Improving Accuracy

In the original limit state (G(o,S)), the stress calculation
contains the large uncertainty from the load. Therefore, rearranging
the response to obtain stress per unit load ¢”, and load P permits
calculating response that does not include the uncertainty in the
load. This arrangement will enable separable sampling of the
independent variables of the limit state G* (o, P, S), similar to that
shown in Eq. (9). This regrouping shifts the large uncertainty in
the load away from the expensive stress calculation (¢*). For
N =M =500 (N = number of stress per unit load samples,
M = number of samples of strength and load), the uncertainty
(mean(stdev® | (Pyme))) in the bootstrapped estimate for the
reformulated limit state due to the response (unit load stresses)
reduces to from 0.0019 to 8.6 x 10~°. On the other hand, the
capacity/ load uncertainty increases to from 0.0014 to 0.0044. It
would appear that we made the situation worse, but now we can
reduce the error in p, estimate by increasing M, which is normally
cheap. The value of M was varied from 500 to 10,000 samples and
the uncertainty in the estimate for reformulated limit state is shown
in Table 5. It is clearly seen that the regrouping allows us to keep a
small number of response calculations and reduce the uncertainty
by having a very large number of inexpensive capacity (load)
calculations. The standard deviation of the probability of failure for
the regrouped limit state (stdev(pZ,)) was also estimated
empirically and shown in Table 5. The standard deviations obtained
are plotted in Fig. 6.

Figure 6 clearly illustrates the effect of regrouping of the
inexpensive random variables of the limit state. In the CMC method,
the probability of failure is calculated using an equal number of
response and capacity samples. In this case, 500 capacity samples
and 500 response samples were used, which corresponds to a single
value on the plot in Fig. 6.

In contrast, the SMC method can use different sample sizes M for
the random variables. Observe that the standard deviation from the
original limit state of SMC levels off to a nearly constant value of
0.002 for M samples greater than 5000. On the other hand, the
standard deviation for the regrouped limit state continually decreases

Table 5 Standard deviation and coefficient of variation of CMC, SMC, and SMC-regrouped limit state for increasing
sample size of M and N = 500. Bootstrapped and empirical estimates are shown

CMC SMC (empirical) SMC (bootstrapping)
M Stdev(ﬁcmc) Cv(ﬁcmc) Stdev(ﬁsmo) Cv(ﬁsmc) mean(StdeV(ﬁsmc.bnol)) StdeV(StdeV(ﬁsmc.bom))
500 0.00488 40.0% 0.0025 21.0% 0.0020 0.0004
5000 0.0021 17.6% -2 -
10,000 0.0020 16.8% - -
CMC SMC-regrouped (empirical) SMC-regrouped (bootstrapping)
M stdev(peme)  CV(Peme)  stdev(pine) CV(pywe)  mean(stdev(Ppepoor))  stdev(stdev(Pine poor))
500 0.0048 40.0% 0.0045 37.2% 0.0046 0.0001
5000 0.0015 12.6% - -
10,000 0.0009 - -

“It was shown that bootstrapping provides uncertainty in the p, estimate with reasonably accuracy for (N = M = 500). It is possible to obtain the
uncertainty in the p, estimate for increasing values of M, but it is not determined due to expensive computation.
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Fig. 6 Standard deviation of CMC, SMC, and regrouped limit state
SMC where N = 500 (fixed) and M is varying for 10,000 repetitions.

with the number of M samples all the way to (stdev(pX,.)) 0.0009 (or
7.9%CV). In other words, in CMC the error estimate of the failure
probability is 40%, but the error associated in SMC is only 16.8%
with the original limit state or 7.9% with the regrouped limit state.
That is, for nearly the same computational cost, SMC with
regrouping can estimate the failure probability more accurately than
CMC.

Figure 6 shows that the magnitude of the uncertainty reduces with
increase in number of M samples. Thus by increasing the sample size
of the inexpensive components (strength and the load), we could
reduce the uncertainty in the p, estimate. For very large M, it would
reach an asymptotic value due to the finite value of N. Figure 6 shows
that by transferring some of the uncertainty from the response to the
capacity, we can take advantage of increased M to further reduce the
error in the probability estimate.

V. Conclusions

The SMC method can provide substantial improvements in
accuracy over the CMC method when response and capacity are
governed by independent random variables. Obtaining estimates of
the accuracy of SMC is critical to taking full advantage of the
method. Here we proposed using bootstrapping to obtain estimates of
the error in the SMC estimates, as well as the contributions of the
capacity and the response to that error. The approach was demon-
strated through an example problem of failure analysis of a com-
posite pressure vessel using Tsai—Wu failure criterion. Because of the
low computational cost of the example, it was possible to conduct
multiple simulations and assess the accuracy of the bootstrapped
estimate empirically.

SMC led to substantial accuracy improvement in determining the
probability of failure compared with CMC method. Bootstrapping
provided reasonable estimates of the uncertainty in the SMC
probability of failure estimates. Bootstrapping also allowed esti-
mating the individual contributions of the response and capacity
toward the uncertainty in the probability of failure estimate, thus
suggesting additional samples of inexpensive capacity would prove
advantageous. Further substantial improvement in accuracy was
achieved by transferring uncertainty away from expensive calcu-
lations by using unit load stresses and generating large samples of
load and strengths.
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